2乗と等比数列の積の和

\[\begin{aligned} &S_n=\sum_{k=1}^n2^kk^2\\ \iff& \left\{ \begin{array}{l} S_{n+1}=S_n+2^{n+1}(n+1)^2\\ S_1=2\\ \end{array} \right. \\ \iff&S_{n+1}-2^{n+2}\{(n+1)^2-2(n+1)+3\}=S_n-2^{n+1}(n^2-2n+3)=S_1-8=-6\\ \iff&S_n=2^{n+1}(n^2-2n+3)-6 \end{aligned}\]